skip to main content


Search for: All records

Creators/Authors contains: "Li, Jerry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop a general framework for finding approximately-optimal preconditioners for solving linear systems. Leveraging this framework we obtain improved runtimes for fundamental preconditioning and linear system solving problems including the following. \begin{itemize} \item \textbf{Diagonal preconditioning.} We give an algorithm which, given positive definite $\mathbf{K} \in \mathbb{R}^{d \times d}$ with $\mathrm{nnz}(\mathbf{K})$ nonzero entries, computes an $\epsilon$-optimal diagonal preconditioner in time $\widetilde{O}(\mathrm{nnz}(\mathbf{K}) \cdot \mathrm{poly}(\kappa^\star,\epsilon^{-1}))$, where $\kappa^\star$ is the optimal condition number of the rescaled matrix. \item \textbf{Structured linear systems.} We give an algorithm which, given $\mathbf{M} \in \mathbb{R}^{d \times d}$ that is either the pseudoinverse of a graph Laplacian matrix or a constant spectral approximation of one, solves linear systems in $\mathbf{M}$ in $\widetilde{O}(d^2)$ time. \end{itemize} Our diagonal preconditioning results improve state-of-the-art runtimes of $\Omega(d^{3.5})$ attained by general-purpose semidefinite programming, and our solvers improve state-of-the-art runtimes of $\Omega(d^{\omega})$ where $\omega > 2.3$ is the current matrix multiplication constant. We attain our results via new algorithms for a class of semidefinite programs (SDPs) we call \emph{matrix-dictionary approximation SDPs}, which we leverage to solve an associated problem we call \emph{matrix-dictionary recovery}. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. Free, publicly-accessible full text available November 6, 2024
  3. Free, publicly-accessible full text available November 6, 2024
  4. We consider the question of Gaussian mean testing, a fundamental task in high-dimensional distribution testing and signal processing, subject to adversarial corruptions of the samples. We focus on the relative power of different adversaries, and show that, in contrast to the common wisdom in robust statistics, there exists a strict separation between adaptive adversaries (strong contamination) and oblivious ones (weak contamination) for this task. Specifically, we resolve both the information-theoretic and computational landscapes for robust mean testing. In the exponential-time setting, we establish the tight sample complexity of testing N(0,I) against N(αv,I), where ∥v∥2=1, with an ε-fraction of adversarial corruptions, to be Θ~(max(d−−√α2,dε3α4,min(d2/3ε2/3α8/3,dεα2))), while the complexity against adaptive adversaries is Θ~(max(d−−√α2,dε2α4)), which is strictly worse for a large range of vanishing ε,α. To the best of our knowledge, ours is the first separation in sample complexity between the strong and weak contamination models. In the polynomial-time setting, we close a gap in the literature by providing a polynomial-time algorithm against adaptive adversaries achieving the above sample complexity Θ~(max(d−−√/α2,dε2/α4)), and a low-degree lower bound (which complements an existing reduction from planted clique) suggesting that all efficient algorithms require this many samples, even in the oblivious-adversary setting. 
    more » « less
    Free, publicly-accessible full text available November 9, 2024
  5. null (Ed.)